M1.		(a)	M1 <u>Concentrations</u> of reactants and products remain constant For M1 NOT "equal concentrations" NOT "amount"	1
		M2	Forward <u>rate</u> = Reverse / backward <u>rate</u> Credit the use of [] for concentration Ignore dynamic, ignore closed system	1
	(b)	M 1	The (forward) reaction / to the right is exothermic or releases heat OR converse for reverse reaction.	1
		M2	The equilibrium responds by <u>absorbing heat</u> / <u>lowering temperature</u> <i>OR</i> Promotes the endothermic reaction by <u>absorbing heat</u> / <u>lowering temperature</u> <i>OR</i> <u>Temperature increase is opposed</u> (by shift to the left) <i>OR</i> Change is opposed by <u>absorbing heat</u> / <u>lowering temperature</u> .	1
	(c)	(i)	A substance that speeds up / alters the rate but is unchanged at the end / not used up. <u>Both ideas needed</u> Ignore references to activation energy and alternative route.	1
		(ii)	None OR no change OR no effect OR nothing OR Does not affect it / the position (of equilibrium) OR (The position is) the same or unchanged.	1
	(d)	(i)	An activity which has no <u>net / overall</u> (annual) carbon emissions to the atmosphere OR An activity which has no <u>net / overall</u> (annual) greenhouse gas emissions to the atmosphere. OR There is no change in the <u>total amount</u> of carbon dioxide /	

carbon /greenhouse gas present in the atmosphere.

The idea that the carbon / CO₂ given out equals the carbon / CO₂ that was taken in Ignore carbon monoxide

1

1

(ii) A method which shows (see below) OR states in words that two times the first equation + the second equation gives the correct ratio.

2 (CH₄ + H₂O	\rightarrow	CO + 3H ₂)
CH ₄ + CO ₂	\rightarrow	2CO + 2H ₂
3CH ₄ + 2H ₂ O + C	$O_2 \rightarrow$	4CO + 8H ₂

Ratio = 1 : 2

[8]

M2.		(a)	(i)	C₀⊦ (pe	$H_{12}O_6 \rightarrow 2C_2H_6OH + 2CO_2;$ enalise C_2H_6O once only in this question)	1
		(ii)	<u>Co</u>	ncent (pe	trated H ₂ SO ₄ OR <u>concentrated</u> H ₃ PO ₄ OR AI ₂ O ₃ ; enalise aqueous or dilute as a contradiction)	1
			C ₂ H	l₅OH <i>(p</i> e	\rightarrow C ₂ H ₄ + H ₂ O OR C ₂ H ₅ OH \rightarrow H ₂ C = CH ₂ + H ₂ O; enalise CH ₂ CH ₂ and CH ₂ -CH ₂ and CH ₂ : CH ₂ for ethene)	1
	(b)	Nic Hyd	kel O roger	R Ni n OR	OR platinum OR Pt OR palladium OR Pd; H₂;	1
	(c)	(i)	C ₁₈ C ₉ H	H ₃₄ O2 I ₁₇ O (<i>ei</i>	Only; Only; mpirical formula is not consequential on molecular formula)	1

1

(ii) (An unsaturated compound) contains (at least) one double bond

OR

Contains C=C; (*must be a positive statement*)

(iii) M1: Bromine water

OR

Br₂(aq)

OR

Bromine

OR

Br₂;

(penalise "bromide water", but mark on)

M1: decolourised or goes colourless

OR

from brown/red/orange/yellow to colourless;

(Must be "colourless" not "clear" for M2) (chemical error if no reagent or wrong reagent, loses both marks) (credit KMnO ₄ for M1, (purple) to colourless for M2 (if acidified) OR (purple) to brown/brown precipitate (if alkaline or unspecified) (No credit for hydrogen or iodine as reagents)

1

1

[10]

M3.

<u>addition</u> of water / steam (1) Ignore "to the reaction"

(a)

(i)

(ii) Advantage: low technology renewable feedstock / resource allowed for use in drinks, perfumes considered to be green (1)

> any one NOT "infinite" or "non-finite" resource

Disadvantage:

slow low yield significant land use has to be distilled labour intensive

any one Ignore yeast NOT (unqualified) batch production NOT impure product

3

(ii) *Reagent*: sodium (/ potassium) dichromate (VI) (VI not essential) (1) M1

Conditions: acidified or sulphuric acid (1) Can be with reagent M2 (heat under reflux) (1) M3

Or correct formula for M1 and M2 M2 depends on M1 (but M2 correct from $Cr_2O_7^{2-}$, $K_2Cr_2O_7^{2-}$ etc M3 mark independent Credit KMnO₄ for M1 Ignore T and P for M2

5

(c) (i)

$$H_3C - CH_3$$

 $H_3C - CH_3$
 $H_3C - CH_$

(ii)

$$CH_3CH_2 - CH - CH_3$$

 I
 OH (1)

2

(ii)

For M1 the + can be on O or H if - OH₂ used For M2 the arrow must go to the + or to oxygen Synchronous loss without carbocation loses carbocation structure mark; can still score ¾ i.e. penalise M3

5

[15]

M4. (a) M1 fermentation

M2 dehydration or elimination

1

(b)	(i)	yeast OR zymase OR an enzyme		
	(ii)	<u>concentrated</u> sulphuric or phosphoric acid (penalise aqueous or dilute as a contradiction)	1	
(c)	(i)	primary or 1°	1	
	(ii)	sugar or glucose or ethanol is renewable OR ethanol does not contain sulphur-containing impurities OR ethanol produces less pollution or is less smoky or less CO/C (the objective is a positive statement about ethanol) (penalise the idea that ethanol is an infinite source or vague statements that ethanol has less impurities) (penalise the idea that ethanol produces no pollution)	1	

- (d) $C_2H_6 \rightarrow C_2H_4 + H_2$
- (e) Addition

(ignore self or chain as a preface to "addition ") (penalise additional) 1

1